3.3.88 \(\int \cos ^{\frac {4}{3}}(c+d x) \sqrt [3]{a+a \cos (c+d x)} \, dx\) [288]

Optimal. Leaf size=78 \[ \frac {2^{5/6} F_1\left (\frac {1}{2};-\frac {4}{3},\frac {1}{6};\frac {3}{2};1-\cos (c+d x),\frac {1}{2} (1-\cos (c+d x))\right ) \sqrt [3]{a+a \cos (c+d x)} \sin (c+d x)}{d (1+\cos (c+d x))^{5/6}} \]

[Out]

2^(5/6)*AppellF1(1/2,-4/3,1/6,3/2,1-cos(d*x+c),1/2-1/2*cos(d*x+c))*(a+a*cos(d*x+c))^(1/3)*sin(d*x+c)/d/(1+cos(
d*x+c))^(5/6)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2866, 2864, 138} \begin {gather*} \frac {2^{5/6} \sin (c+d x) \sqrt [3]{a \cos (c+d x)+a} F_1\left (\frac {1}{2};-\frac {4}{3},\frac {1}{6};\frac {3}{2};1-\cos (c+d x),\frac {1}{2} (1-\cos (c+d x))\right )}{d (\cos (c+d x)+1)^{5/6}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(4/3)*(a + a*Cos[c + d*x])^(1/3),x]

[Out]

(2^(5/6)*AppellF1[1/2, -4/3, 1/6, 3/2, 1 - Cos[c + d*x], (1 - Cos[c + d*x])/2]*(a + a*Cos[c + d*x])^(1/3)*Sin[
c + d*x])/(d*(1 + Cos[c + d*x])^(5/6))

Rule 138

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[c^n*e^p*((b*x)^(m +
 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rule 2864

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[(-b)*(
d/b)^n*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(a - x)^n*((2*a - x)^(m
 - 1/2)/Sqrt[x]), x], x, a - b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !
IntegerQ[m] && GtQ[a, 0] && GtQ[d/b, 0]

Rule 2866

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[a^Int
Part[m]*((a + b*Sin[e + f*x])^FracPart[m]/(1 + (b/a)*Sin[e + f*x])^FracPart[m]), Int[(1 + (b/a)*Sin[e + f*x])^
m*(d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rubi steps

\begin {align*} \int \cos ^{\frac {4}{3}}(c+d x) \sqrt [3]{a+a \cos (c+d x)} \, dx &=\frac {\sqrt [3]{a+a \cos (c+d x)} \int \cos ^{\frac {4}{3}}(c+d x) \sqrt [3]{1+\cos (c+d x)} \, dx}{\sqrt [3]{1+\cos (c+d x)}}\\ &=\frac {\left (\sqrt [3]{a+a \cos (c+d x)} \sin (c+d x)\right ) \text {Subst}\left (\int \frac {(1-x)^{4/3}}{\sqrt [6]{2-x} \sqrt {x}} \, dx,x,1-\cos (c+d x)\right )}{d \sqrt {1-\cos (c+d x)} (1+\cos (c+d x))^{5/6}}\\ &=\frac {2^{5/6} F_1\left (\frac {1}{2};-\frac {4}{3},\frac {1}{6};\frac {3}{2};1-\cos (c+d x),\frac {1}{2} (1-\cos (c+d x))\right ) \sqrt [3]{a+a \cos (c+d x)} \sin (c+d x)}{d (1+\cos (c+d x))^{5/6}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 15.16, size = 0, normalized size = 0.00 \begin {gather*} \int \cos ^{\frac {4}{3}}(c+d x) \sqrt [3]{a+a \cos (c+d x)} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[Cos[c + d*x]^(4/3)*(a + a*Cos[c + d*x])^(1/3),x]

[Out]

Integrate[Cos[c + d*x]^(4/3)*(a + a*Cos[c + d*x])^(1/3), x]

________________________________________________________________________________________

Maple [F]
time = 0.08, size = 0, normalized size = 0.00 \[\int \left (\cos ^{\frac {4}{3}}\left (d x +c \right )\right ) \left (a +a \cos \left (d x +c \right )\right )^{\frac {1}{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(4/3)*(a+a*cos(d*x+c))^(1/3),x)

[Out]

int(cos(d*x+c)^(4/3)*(a+a*cos(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(4/3)*(a+a*cos(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^(1/3)*cos(d*x + c)^(4/3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(4/3)*(a+a*cos(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

integral((a*cos(d*x + c) + a)^(1/3)*cos(d*x + c)^(4/3), x)

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(4/3)*(a+a*cos(d*x+c))**(1/3),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3003 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(4/3)*(a+a*cos(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate((a*cos(d*x + c) + a)^(1/3)*cos(d*x + c)^(4/3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^{4/3}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{1/3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(4/3)*(a + a*cos(c + d*x))^(1/3),x)

[Out]

int(cos(c + d*x)^(4/3)*(a + a*cos(c + d*x))^(1/3), x)

________________________________________________________________________________________